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Abstract. Selective reflection of laser radiation from the interface between atomic vapor and a dielectric
is studied for a wide range of vapor density. A self-consistent model is developed, some analytical results
are obtained, as well as a number of curves are computed that are in good agreement with experimental
spectra measured in cesium and rubidium vapor cells.

PACS. 39.30.+w Spectroscopic techniques – 42.25.Gy Edge and boundary effects; reflection and refraction
– 32.70.Jz Line shapes, widths, and shifts

1 Introduction

Reflection of radiation from the boundary between a di-
electric and atomic vapor is termed as selective reflection
(SR), because it has a prominent spectral structure on the
atomic transition frequencies [1–3]. The selective reflec-
tion is an essential spectroscopic tool differing in a num-
ber of aspects from the absorption spectroscopy because
of relatively narrow width of spectral lines. Among the
applications of SR spectroscopy is: study of the van-der-
Waals interaction of atoms with a dielectric surface [4],
determination of the homogeneous width and the shift
of resonance lines [5,6], of cross-sections of resonant col-
lisions [7], narrowing of generation spectrum of broad-
band lasers, study of coherent and magneto-optical pro-
cesses [8–10], locking a diode laser frequency to atomic
resonance lines [11,12], etc. This technique may, in partic-
ular, be useful for the problems of determination of abun-
dances of isotopes in natural atomic vapors.

The small widths of spectral lines in SR, resolving the
resonances inside the Doppler profile, is associated with
non-locality of the atomic medium polarization and with
peculiarity of interaction of atoms having different velocity
directions with the cell walls [2,13]. Indeed, the atoms lose
their polarization in collisions with the cell wall. So, the in-
duced dipole moment for the positive velocity atoms near
the input window is equal to zero, while for negative veloc-
ity atoms it does not vanish. Near the output window the
pattern is opposite. Such a selectivity of the polarization
with respect to the sign of the velocity projection gives,
as a result, the experimentally observed spectra. The po-
larization non-locality (spatial dispersion) is in this case
displayed on the lengths of the order λγDop/γ (λ is the
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wavelength of the incident radiation, γDop the Doppler
width, and γ the full homogeneous width, i.e., the sum of
the natural and collisional self-broadening widths).

There are many theoretical and experimental stud-
ies of SR [7,14–24]. Theoretical models deal as a rule
with the approximation of dilute media which is valid for
only the densities of the resonant gas where the collision
linewidth is much narrower than the Doppler broadening
(see, e.g., [14,16,17,19,20]). Absorption of laser radiation
is in this approach completely neglected.

In other limiting case of high densities when the colli-
sion broadening exceeds well the Doppler width, the spa-
tial dispersion of the medium may be disregarded and the
reflected signal is well described by the so-called quasi-
stationary solution by means of the complex refraction
index for a resonantly absorbing medium [25].

The general self-consistent problem of SR is, to the
best of our knowledge, not yet solved, except for refer-
ences [21,22], where it is treated numerically.

The present work is aimed at theoretical study of the
selective reflection in atomic media with arbitrary optical
density and detailed experimental investigations in cesium
and rubidium vapor in a wide range of densities (from
γDop/γ � 1 up to γDop/γ � 1). The intensity of laser
radiation was being in these studies properly chosen to
be sufficiently low (lower than 0.1 mW/cm2 in the en-
tire range of densities) as to avoid nonlinear effects such
as saturation and optical pumping. The cell length was
much longer than the length of linear absorption which
allowed us to avoid interference effects, occurring in thin
cells, that may affect essentially the shape of the reflected
signal (see [17,20,23]). The theoretical model is based on
the self-consistent solution of Maxwell equations together
with the density matrix equation for a multilevel system.
We obtain relatively simple expressions well describing the
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experimental results and passing, in limiting cases, to the
well-known ones; computed curves are in agreement with
the results of measurements.

The theory is presented in Section 2. The experimental
results and their comparison with the computed curves are
given in Section 3.

2 Theory

We calculate as well as compute the selective reflection
spectra for atomic vapor at various temperatures (atomic
number densities). For this purpose we consider an one-
dimensional problem where the laser radiation is assumed
to be a monochromatic plane wave incident normally on
the interface between the cell-window material and the
resonant vapor. This wave is partially reflected from the
window surface and partially transmitted through the va-
por cell. So, we represent the electric field strengths of
these three fields in the form

Einc = Re {E0 exp(−i(ωt − kn1x))} ,

Eref = Re {ER exp(−i(ωt + kn1x))} ,

Etr = Re {ET exp(−i(ωt − kn3x + ϕ))} . (1)

Here ϕ = kL(1−n3), L is the length of the vapor column,
n1,3 are the refraction indices of respective media, k =
ω/c (the phase ϕ is introduced for convenience). The field
inside the resonant medium and the medium polarization
may be written as

Emed = Re {E(x) exp(−iωt)} ,

Pmed = Re {P(x) exp(−iωt)} . (2)

The conditions of continuity of fields and of their deriva-
tives on the interfaces read

E(0) = E0 + ER, E(L) = ET exp(ikL),

∂E(0)
∂x

= in1k (E0 − ER) ,
∂E(L)

∂x
= in3kET exp(ikL).

(3)

The experimentally measured reflection coefficient is de-
fined, according to (3), as
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The field E should be calculated in a self-consistent way
by solving the density matrix equations along with the
Maxwell equations for the fields. We will consider the lin-
ear case (the input signal is weak), which makes possible
to consider the multilevel system as a number of indepen-
dent two-level atomic systems (i.e., the medium polariza-
tion may be represented as P (x, u) =

∑

n
Pn(x, u); n being

the numbers of the excited atomic levels). The system of
Maxwell and density matrix equations is in this case re-
duced to

d2E(x)
dx2

+ k2E(x) = −4πk2 〈P(x, u)〉u ,
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Here N(u) is the number density of the ground-state
atoms (with u being the atomic velocity projection on the
light propagation direction), ∆n, dn are, respectively, the
detuning of resonance and the atomic 1 → n transition
dipole moment, Pn = N(u)dnρn1, ρn1 the correspond-
ing nondiagonal element of the density matrix, and γn

is the full width of the transition: γn = (1/2)Γnatural +
Γcollision +Γbuffer +Γlaser ; 〈...〉u means averaging over the
(Maxwellian) velocity distribution (the quantity Γcollision

is generally complex describing both the broadening and
the shift).

The correct boundary conditions for the medium po-
larization are [16]

Pn(x = 0, u > 0) = 0, Pn(x = L, u < 0) = 0. (6)

We assume in what follows that the cell length L exceeds
essentially the length of penetration and ET in (3) may be
set equal to zero.

From the second equation of the system (5) and the
boundary conditions (6) we obtain for the polarization Pn

(see, e.g. [22])

Pn(x, u > 0) = i(qβn/u)
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Here the following notations are introduced: q = Nd2/�,
βn = |dn|2 /d2 with d2 =

∑ |dn|2. By substituting (7) into
the Maxwell equation and replacing u < 0 by −u > 0 we
obtain the following equation:
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where
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The first integral in the rhs of the equation (8) is
the macroscopic polarization caused by atoms with pos-
itive velocities, while the second one is caused by
atoms with negative velocities. If we now replace x by
z = L − x, we obtain a boundary problem for the func-
tion E1(z) = E(L − z) with zero initial conditions:

d2E1(z)
dz2

+ k2E1(z) =

− 4πk2iq

⎧
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(9)

E1(0) = 0;
dE1(0)

dz
= 0.

In general case the solution to the problem (9) with the
corresponding boundary conditions is rather complicated,
but we will be interested in only the asymptotic values
entering the expression (4)

E1(L → ∞) = E(0);
dE1

dz
(L → ∞) = −dE

dx
(0). (10)

So, we only need to determine the asymptotic solution to
the equation (9) at L → ∞. It is easy to see that the
contribution from the first integral in the rhs of (9) into
the asymptotic solution goes to zero and we have
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By performing the Laplace transformation in (11) and us-
ing the convolution properties we obtain

(

s2 + k2
)

Ẽ1(s) = −4πk2iqχ(s)Ẽ1(s),

χ̃(s) =
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〉
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. (12)

The equation (12) has a unique solution only if the fol-
lowing condition is met:

s2 + k2 + 4πk2iqχ̃(s) = 0. (13)

In general case it may easily be shown that the equa-
tion (13) has two roots, one of which is damping (Re(s) <
0) and does not contribute to the asymptotic solution. So,
we have finally

E1(z) = Aepz, (14)

where p is that root of (13), which has a positive real part.
So, the reflection coefficient acquires the form
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Fig. 1. Schematic drawing of the experimental set-up.

(the choice of p is caused by the condition Re(p) > 0) or
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The quantity X in these expressions is the polarizability of
the resonant medium, which is determined by the equation

X = −q
∑

n

βn

〈
1

ku
√

1 + 4πX + ∆n + iγn

〉

u>0

. (17)

Note that in dilute media (q � 1) the reflection coefficient
may be expanded into a series with respect to q; the first
term of this expansion gives the well-known expression
(see, e.g., [17,16]). The opposite limiting case of dense
media gives for the quantity X the following expression

X = −q
∑

n

βn
1

∆n + iγn
. (18)

In general case a simple iteration procedure may be used
providing the expression for the reflection coefficient to
any desired accuracy:

Xk = −q
∑
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〈
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√

1 + 4πXk−1 + ∆n + iγn

〉
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.

(19)
In the case of a two-level system equation (17) reduces
to a cubic equation that may be solved with use of the
Cardano formulas.

3 Experimental results and discussion

In this section we report the experimental studies of the
selective reflection covering a wide range of atomic number
densities from the dilute to dense vapor limiting cases.

Schematic diagram of the experimental set-up is shown
in Figure 1. Standard free running diode lasers (spectral
linewidth ∆νL ∼ 20 MHz) were used as a tunable radia-
tion source in the range of the D lines of atomic cesium and
rubidium. A fraction of the laser radiation was branched
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Fig. 2. Vapor density dependence of selective reflection spectra
for Fg = 3 → Fe = 2, 3, 4 and Fg = 4 → Fe = 3, 4, 5 transition
groups of Cs D2 line.

to an auxiliary saturated absorption (SA) set-up to have a
frequency reference. The main, linearly polarized radiation
beam, of 2–3 mm diameter, was directed nearly normally
(the incidence angle ∼20 mrad) onto the front sapphire
window of the SR glass cell with the side-arm containing
alkali metal. The cell was placed in a two-section oven,
which allowed one to individually control the tempera-
tures of the cell body and of the side arm. The power
of the incident beam was attenuated to typically 20 µW
to avoid the saturation and optical pumping effects. The
reflected radiation power was detected by a photodiode
placed 1 m away from the window. At this distance the
beam spots reflected from the outer and inner faces of the
slightly wedged front window are completely separated.
Small detection solid angle of the SR signal (0.0001 srad)
allowed us to suppress the resonance fluorescence contri-
bution to the recorded signal. The SR and SA photodiodes
were provided by operation amplifiers and followed by a
DAQ board allowing two-channel computer recording and
processing of the signals.

To obtain SR spectra, the laser radiation frequency
was linearly scanned up to ∆νscan = 20 GHz through the
spectral region covering the chosen groups of hyperfine
transitions of given alkali D line. The scanning was re-
alized by application of periodical triangular pulses with
5 s typical rise/fall time. Each spectrum contained 1000
acquired points with 50 measurements per point.

In the T-shaped sealed-off cells we used, the saturated
vapor pressure is determined by a side arm reservoir tem-
perature Tsa (more precisely, temperature of the metal-
vacuum boundary, the coldest spot in the cell). The win-
dow temperature Tw has to be set to somewhat higher
value for preventing vapor condensation; the value of Tw

does not affect significantly the atomic vapor density N .
The latter was determined using Langmuir-Tailor equa-
tions [26].

The regular measurements were done at various tem-
perature conditions, for ∼50 values of N ranged between
1012 and 5×1016 cm−3. The SR spectra were recorded af-
ter complete stabilization of the temperature regimes, as
monitored by thermocouple gauges. The minimum value
of N was chosen so that to ensure acceptable signal to

Fig. 3. Experimental (solid lines) and theoretical (dotted
lines) selective reflection spectra for Fg = 4 −→ Fe = 3, 4, 5
transitions of Cs D2 line at various number densities of atomic
vapor. Horizontal line shows the value of off-resonance reflec-
tion.

noise ratio for direct recording (no frequency modulation)
of the SR spectra; the maximum value of N employed was
limited by operation temperature conditions in the cells.
Note that the above-mentioned density range covers the
entire region of passage from dilute to dense vapor, as
defined in Section 2.

Figure 2 shows the general evolution of the SR spec-
tra with number density of atoms for the case of Cs D2

line, separately for Fg = 3 → Fe = 2, 3, 4 and Fg =
4 → Fe = 3, 4, 5 transitions. The SR spectra exhibit
well pronounced sub-Doppler structure at low vapor den-
sities, which is not clearly visible in Figure 2 because of
the same scale for all the plots. Increase of N results in
growth of the sub-Doppler peak amplitudes without no-
ticeable increase of their linewidths (dilute vapor regime,
N � 5 × 1014 cm−3). As vapor density rises, the increase
of peak amplitudes is accompanied by broadening of the
structure (intermediate regime, N ∼ 5×1014–1016 cm−3).
The further increase of N causes essential broadening of
the SR signal (the sub-Doppler structure is washed out),
while the growth of signal amplitudes saturates (dense va-
por regime, N � 1016 cm−3).

The experiment with rubidium was done using the
cells filled with natural mixture of 85Rb and 87Rb iso-
topes (abundances, respectively, 72.2% and 27.8%). Ac-
cordingly, the low density D1 line SR spectra consist of
8 sub-Doppler peaks (transitions Fg = 2, 3 → Fe = 2, 3
of 85Rb and Fg = 1, 2 → Fe = 1, 2 of 87Rb), and the D2
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(a)

(b)

Fig. 4. Selective reflection spectra for D1 line of Rb:
(a) experimental curve for natural rubidium; (b) calculated
curves for various isotopic abundances. The vapor density is
N = 1014 cm−3.

line spectra consist of 12 sub-Doppler peaks (transitions
Fg = 2 → Fe = 1, 2, 3; Fg = 3 → Fe = 2, 3, 4 of 85Rb and
Fg = 1 → Fe = 0, 1, 2; Fg = 2 → Fe = 1, 2, 3 of 87Rb).

Figure 3 demonstrates the comparison of some exper-
imentally obtained SR spectra with those computed by
means of formulas (16) and (19) for the D2 line of cesium.
In calculations we added the Lorentz-Lorenz shift (see,
e.g., [22]) into the expression (19). The iteration series
converges sufficiently fast, so computed were actually the
first three terms. The values of all the parameters needed
for computations were taken from reference [26]. The plots
show a good agreement between the calculations and mea-
surements.

SR spectrum for the D1 line of natural rubidium mea-
sured at the vapor density of about 1014 cm−3 is shown in
Figure 4a. The same spectrum calculated theoretically is
given in Figure 4b at three different abundances of 85Rb

and 87Rb. It is well seen that a change in the abundance of
one of isotopes leads to a drastical modification of the SR
spectrum. This means that SR measurements can serve as
a sensitive and visualizing tool for determination of per-
centage of isotopes in mixtures.

4 Conclusion

The selective reflection of laser radiation from the inter-
face between atomic vapor and cell window is studied the-
oretically and experimentally. A theoretical self-consistent
model is developed, valid for arbitrary vapor densities.
Simple expressions are obtained enabling one to calculate
the SR spectra to the needed accuracy. A number of selec-
tive reflection spectra were recorded in Cs and Rb vapors
under various experimental conditions; in particular, the
vapor density in the cells was varied in a wide range from
1012 to 1017 cm−3. At low densities the spectra exhibit
prominent sub-Doppler structure, while at high densities
(∼ 5 × 1015 cm−3) the structure practically disappears.
The amplitude of the reflection signal saturates at densi-
ties higher than 1016 cm−3. Analytical calculations as well
as numerical simulations based on suggested theoretical
model explaining these peculiarities, are in good agree-
ment with the experimental results in the entire density
range.
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